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Unified BRST Structure for Gravity and 
Supergravity 

M .  Tahir i  t 

Received October 7, 1995 

Enlarging the gauge group with two extra fermionic coordinates, we provide a 
unified geometric formulation of the BRST and anti-BRST transformations for 
gravity in the vierbein formalism and simple supergravity. 

1. INTRODUCTION 

Since Faddeev-Popov ghosts are anticommuting fields and the genera- 
tors of the BRST and anti-BRST transformations anticommute with each 
other (Becchi et al., 1975; Tyutin, 1975; Curci and Ferrari, 1976; Ojima, 
1980), it is clear that a suitable framework for analyzing the geometrical 
structure of a quantized gauge theory is differential supergeometry (Bonora 
and Tonin, 1981; Bonora et al., 1982; Hoyos et aL, 1982). 

In this geometrical setting for gauge theories with Faddeev-Popov fields 
the BRST and anti-BRST transformations are given by translations on the 
anticommuting coordinates of the (4, 2)-dimensional superspace Ms. On the 
other hand, it is interesting to observe that in this approach constraints should 
be imposed on the supercurvature corresponding to the superconnection in 
Ms, which contains more component fields than necessary to describe the 
physics. Appropriate constraints are given by imposing the vanishing of 
the supercurvature components along some anticommuting direction (soul- 
flatness condition). In the context of quantized Yang-Mills theories, these 
have been obtained as equations of motion by introducing a super-Lagrangian 
(Hoyos et at., 1983). 

In this superspace formulation of gauge theories, a prescription has been 
given in which the quantum Lagrangian for Yang-Mills theory, supersymmet- 
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ric Yang-Mills theory, and gravity is derived (Hirschfeld and Leschke, 1981; 
Falck et al., 1983; Fatck and Hirschfeld, 1984). 

General solutions to these supercurvature constraints in terms of uncon- 
strained prepotential superfields for ordinary and supersymmetric gauge theo- 
ries have been considered in Dur and Gates (1990) and Hull et al. (1991). 

Recently, the BRST and anti-BRST transformations in Yang-MiUs the- 
ory have been interpreted geometrically in terms of the superfiber bundle 
formalism (Loumi and Tahiti, 1993). 

In the present paper, we propose to extend the geometrical formulation 
of Yang-Mills theory elaborated in Loumi and Tahiti (1993) to gravity in 
the vierbein formalism and to simple supergravity. 

This paper is organized as follows: In Section 2 we provide a general 
geometric formulation of the BRST and anti-BRST symmetries. The basic 
idea is to enlarge with extra fermionic coordinates the gauge group of the 
original theory, be it a Yang-Mills, a gravity, or a supergravity theory. One 
of the results of this section will be to obtain the soul-flatness condition 
naturally from the geometrical structure without developing a super-Lagran- 
gian theory as in the superspace formulation of BRST invariant Yang-Mills 
theories (Hoyos et al., 1983). In Sections 3 and 4 we apply the general 
formalism of Section 2 to gravity in the vierbein formalism and to simple 
supergravity. Section 5 is devoted to discussion. 

2. GENERAL FORMALISM 

2.1. The Geometrical Scheme 

Gauge theories are naturally described as geometrical theories over a 
principal (super) fiber bundle P(M, G). The base space M and the structural 
group G are identified with space-time and gauge group, respectively. The 
gauge fields A~ and the strength field tensor F~,~ are the coefficients of a 
connection o~ and its curvature ~ ,  respectively. 

In Yang-Mills theory, G is a d-dimensional internal compact Lie group. 
In gravity, G is the 10-dimensional Poincar6 group P. In supergravity, G is 
the (10, 4)-dimensional super-Poincar6 group SP (Yates, 1980). 

When a gauge theory is quantized, one needs to introduce Faddeev- 
Popov fields so that the original gauge invariance is broken and new invari- 
ances arise, the BRST and anti-BRST invariances (Becchi et at., 1975; Tyutin, 
1975; Curci and Ferrari, 1976; Ojima, 1980). 

The aim of this section is to find a geometrical formulation of BRST 
and anti-BRST transformations where the soul-flatness condition is obtained 
naturally from the geometrical structure. The case of Yang-Mills theory was 
already considered in Loumi and Tahiti (1993). Here we take a step further, 
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and consider a theory with (m, n)-dimensional Lie supergroup G as gauge 
group and living on the principal superfiber bundle p,.(M, Gs), where the 
structural supergroup Gs is given by 

Gs = G X S °'2 (2.1) 

with the group multiplication 

(g, O, -O)(g', 0', 0') = (gg', 0 + 0', -0 + -0') (2.2) 

S °'2 is the (0, 2)-dimensional vector superspace defined by S °'z = (BI) 2, 
where B~ is the odd part of a Grassmann algebra (Rogers, 1981; Bruzzo and 
Cianci, 1984). 

We shall restrict ourselves to a principal superfiber bundle Ps which is 
globally trivial with respect to S °'2. This choice will be related to the fact 
that the global BRST transformations are the quantum equivalent of  the 
classical gauge invariance. 

The Lie superalgebra ~ of  the structural Lie supergroup Gs = G x S °,2 
is isomorphic to ~3 • s °.2, where ~3(s °'2) is the Lie superalgebra of  G(S°'2). 
Let la (A = 1 . . . . .  rn + n) be the generators of  the (m, n)-dimensional Lie 
supergroup G, and F,, (a = 1, 2) the odd generators of S °'2. We remark that 
for Yang-Mills theory m = d and n = 0, for gravity m = 10 and n = 0, 
and for simple supergravity m = 10 and n = 4. The generators IA are even 
for A = 1 . . . . .  m and odd for A = m + 1 . . . . .  m + n. The Lie superalgebra 
q3~ is determined by the structure constants 

[la, 18] = fAnClc (2.3a) 

[Ia, F~] = 0 (2.3b) 

[F~, F~] = 0 (2.3c) 

where [ , ] is the graded Lie bracket. 
Let to be the superconnection in Ps defined as an even ~s-valued 1- 

superform such that (Rogers, 1981; Bruzzo and Cianci, 1984) (i) co(X') = X, 
where X ~ ~s and ;~ is the fundamental vector superfield in P~ associated 
with X, and (ii) we have 

R' to = ad(g-l)to, g E Gs (2.4) 

The supercurvature 12 is an even ~s-valued 2-superform defined from the 
superconnection in the usual way, satisfying the structure equation 

t'~ = Dto = d o  + I/2[to, to] (2.5) 
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where the exterior differential is defined as an even linear map in the space 
of differential superforms satisfying 

d(ot ^ [3) = o~ ^ d[3 + ( -  1)deg 13 d(x ^ [3 

where 

d 2 = O  

af = a z .  oof 

(2.6a) 

(2.6b) 

(2.6c) 

Z = (Za)a=l ...... +n+6 = (Z M, yi)M=l,...,6;i=t,...:a+n 

(X IJ', O, -0, i = Y )~= I,...,4;i= I,...,m+n 

is a local coordinate system on the total space Ps- We recall that the total 
space Ps is locally the product of  the base space M (the space-time) with the 
fiber Gs = G X S °,2 (the structure supergroup). 

In the local coordinate system Z = (Za), we express the superconnection 
to in the total space P, as 

to = dZ'~to,~ = dzMtoM + dyitoi = dx~¢~. + dO+ + d-6--~ + dyitoi (2.7) 

By using (2.5) and (2.6), we determine the component superfields of the 
supercurvature ~ = 1 / 2 d Z  b ^ dZaD, ab: 

f ~  = 0 ~  - 0 ~  + [ ~ ,  ~ ]  (2.8a) 

~Mo = OMdP -- (--1)SMIOotoM + [toM, ~b] (2.8b) 

~M~ = 0 ~  -- (--1)'M'0gtoM + [to M, ~1 (2.8C) 

~'~Mi = OMOJi - -  ( - - 1 ) l M l ' l i l o i t o M  + [toM, toi] (2.8d) 

~'~ij = Oitoj --  ( - - l ) l i l ' t J l o j t o i  + [to/, toj] (2 .8e)  

where I M t and I i I represent the Grassmann grades of toM and toi, respectively. 

2.2. BRST and Anti-BRST Transformations 

In the superspace formulation of  the BRST symmetry in quantized gauge 
theories, many auxiliary fields appear as components of  the superfields, which 
are eliminated by imposing the vanishing of  the supercurvature components 
along some anticommuting direction. 

It is straightforward to obtain these constraints in our approach by the 
Cartan-Maurer structural theorem, which says 

i(X)~ = 0 (2.9) 

where i denotes the contraction of vectors with forms and X is a vertical 
vector superfield in P,. 
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To have an adequate expression of (2.9) in coordinates, we write the 
supercurvature ~ in the (Z a) = (z M, yi) local coordinate system as 

f I  = 1/2dz N ^ dzM~MN + I/2dy i ^ dzMI~Mi + 1/2@ i A dyi~ij (2.10) 

and we remark that 00, dg, and Oi are vertical vector superfields. Thus 

lqM0 = ~ = 0 (2.1 1 a) 

OMi = f~(/ = 0 (2.1 I b) 

Furthermore, for the BRST and anti-BRST transformations of gauge 
and ghost fields, we know from the Yang-Mills case that we first consider 
their variations under the gauge group and then replace the transformation 
parameters with the corresponding ghosts and a constant anticommuting 
parameter. 

In our case, applying the replacement 

yi = Ai0 + ~ (2.12) 

we can show that the equations (2.1 lb), which use the indices of the gauge 
group coordinates, may be related to the equations (2.1 la) as follows: The 
Grassmann grades of the constant parameters A i and ~i  are given by I Ail 
= I Ail = Iil + 1 (mod 2). The vertical vector fields 0~ are given by 

Oi = AiOo + A,-O~ (2.13) 

l'~ljl +1~i where AiAj + A"Aj = ( - . ,  ,,j such that dyi(Oi) = ~-. We then obtain 

to i = AAb + AAb (2.14) 

According to (2.8), (2.13), and (2.14), we find 

~'~ Mi : ( - -  1)IMIt liI + I)( Ai~'~ MO -1- "Ai~'~ M'O) (2.15a) 

f~j  = (- l ) 'J '+t{A,AjOoo + A ~ A / f ~  + (A,-Aj + X,Aj)f~0~}(2.15b) 

Thus, equations (2.1 la) and (2. l ib )  are equivalent under the above replace- 
ments. We shall restrict ourselves to the interpretation of (2.1 la). 

The superconnection and supercurvature components are ~.~-valued 
superfields 

03 M = O.)MAIA "+ (.OMetFot (2.16a) 

tqgN = ~ M a l a  + ~MN'~F~, (2.16b) 

In view of (2.3), (2.8), (2.1 la), and (2.16), we have 

12oo m = 20oqb - ( -  l)lCl~C~efec A = 0 (2.17a) 

~'~-~A = 20g~ - ( -  1)~c'~c~Bfsc a = 0 (2.17b) 
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~'~0"~ A "~ O0-~ A ~- O'~+ A --  ( - -1 ) ICI -~Cf~J%cA -'~ 0 

~"~0 A = OO.f~)A __ aO(I.)la.A 3¢_ ( ] )C( I ) l , t%? = 0 

II MO ~ = aM+ ~ 

f~ M~ '~ = aM+ '~ 

__ O0-(I)lxA _it_ ~ C ~ p , % p  = 0 

--  ( - -1)IMIOotOM a = 0 

--  ( - - 1 ) I M I o ' 6 ~ M  c~ = 0 

(2.17c) 

(2.17d) 

(2.17e) 

(2.17f) 

(2.17g) 

where ICt ( ICt  + 1) is the Grassmann grade of lc(gp c, -~c) ( iCI = 0 if C 
= 1 . . . . .  m a n d l C I  = i if C =  m + I . . . . .  m + n). 

Two interesting remarks are in order. First, the equations (2.17) with 
t CI = 0 correspond to the constraints of the supercurvature in the context 
of Yang-Mills theory (Loumi and Tahiri, t 993). Second, the equations (2.17f) 
and (2.17g) for the potentials to '~ (i.e., qb ~', qb '~, and ~ / ' )  associated to F,~ 
correspond to the vanishing of the S°'2-supertorsion, 

~ M N  ct = OM(DN a - -  ( - -  1 ) IM I ' IN IONIDM a ( 2 . 1 8 )  

along some anticommuting direction. We note that this is also the case for 
Yang-Mills theory (Loumi and Tahiri, 1993). Moreover, in order to remove 
the S°'2-supertorsion dependence of the theory, we supplement the equations 
(2.17f) and (2.17g) with the constraint 

~,~'~ = O ~  '~ - a~(I)~ '~ = 0 (2.19) 

Thus 

~ = 0 (2.20) 

The potentials to ~ being a pure gauge because of (2.20), we will concentrate 
on the transformation laws for to a (i.e., ~a, ~ a  and ~ a ) .  

We expand ~B(x~, 0, 0) in power series of 0 and 0: 

di)~S(x, O, -0) = A~B(x) + OR~8(x) + -6--R~S(x) + O'tS~S(x) (2.21a) 

~)B(x, O, -0) = cB(x) + ere(x)  + -O-fB(x) + OOsB(x) (2.21b) 

-~8(x, O, -0) = -(8(x) + O~S(x) + -OtS(x) + O-OuB(x) (2.21c) 

Equations (2.17a)-(2.17e) are expressed in terms of the field components of 
the superconnection by 

R~ B = c3~c t~ + cOA~EfeD8 (2.22a) 

-~p.B = O -~B + -~DAoEfEDB (2.22b) 

r s = 1/2(- lfDIcOcEfEDB (2.22C) 
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t B = 1/2(- l) l°~-(° '(Efeo B (2.22d) 

~B + ?s  _ ( _  I),O,-(DCEfEDS = 0 (2.22e) 

S~ B = 0~? B + ? ° A S f E e e  -- ( - -  I ) tO tc °R~e fEoB  (2.22f) 

S n = ( _  1 )1D170 c efE ° ~ (2.22g) 

U B __(__ I "0 D I'~ D"g~ E.r B = ,J , ~ jEo  (2.22h) 

Let Q and Q be the differential operators representing the S°?--generators 
F~, (a = 1, 2). The S°,2-motion in the total space P~ 

R(0, 0): (x% 6, ~) ~ ( x~, ~ + 0, ~ + 0) (2.23) 

may be generated by 0Q + 0Q. Thus, the operational representation is given by 

r(0, 0) = exp(0Q) + 0Q) (2.24) 

For infinitesimal group action and by using Hausdorff's formula (all commu- 
tators vanish because [Q, Q] = [Q, Q] = [Q, Q] = 0), we have 

r(0, 0) = (1 + 0Q) (1 + 0Q) (2.25) 

According to (2.4), (2.23), and (2.25), we find 

R*(0, 0)toMA(x t', ~j, ~) 

~- (IJMA(x It, ~ "11- O,-~ "}- "0) 

= r(0, 0)tOMa(X ¢, ~, ~)r-l(0, 0) 

= toMA(x ~, ~j, ~) + 0[a, toMa(x ~, ~j, ~)1 

+ -o[-a, toMa(x ~, 6, ~)] 
+ 00[Q, [Q, toMA(X% 6, ~)]l (2.26) 

where we have used 

[Q, [Q, O'}MA( XI'~, 6, ~ ) ] ]  = - - [ a ,  [Q, coMA( xI'L, 6, ~ ) ] ]  

Evaluating (2.26) at ~ = ~ = 0 gives 

~ e  = A¢ ° + 0[Q, A~, n] + 0[Q, A,  ~] + 00[Q, [Q, A~n]] (2.27a) 

~b 8 = c n + 0[Q, c n] + 0[Q, c e] + 00[0, [Q, c8]] (2.27b) 

~B = ?s + 0[Q, ?B] + O[Q, yB] + 00[Q, [Q, ?B]] (2.27c) 

From (2.22), we get the minimum number of independent component fields: 
A D, C D,-~D, ?D ~ B o. 
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and 

where 

Using (2.21), (2.22), and (2.27), we obtain 

[Q, A~ °] = O~c ° + cFA~efEF ° 

[Q, C °] = I/2(--1)'FIc%efEeO 

[Q, -60] = B o 

[Q, B °] = 0 

(2.28a) 

(2.28b) 

(2.28c) 

(2.28d) 

[~, % 0 ]  = 0~-6 o + -6~A EfE~o 

[-Q, -d °] = I/2(-- I )'FI-tF-6efEFO 

[-0, c °] = B '°  

[-0, B'°I  : 0 

(2.29a) 

(2.29b) 

(2.29c) 

(2.29d) 

?o = B,O = _ B  o + ( _  1)IFI'~FcEfEFD (2.30) 

In the case of Yang-Mills theory, the relations (2.28)-(2.30) reproduce 
the BRST and anti-BRST transformations, where A¢, c, -6, B, Q, and Q 
represent the potential, ghost, antighost, auxiliary field, and charges of the 
BRST and anti-BRST transformations, respectively (Becchi et al., 1975; 
Tyutin, 1975; Curci and Ferrari, 1976; Ojima, 1980; Bonora and Tonin, 1981; 
Bonora et al., 1982; Hoyos et al., 1982, 1983; Loumi and Tahiri, 1993). 

3. THE CASE OF GRAVITY IN THE VIERBEIN FORMALISM 

In this section we apply the general formalism of the previous subsection 
to gravity in the vierbein formalism. The gauge group G is the Poincar6 
group P generated by M~b and Pa satisfying the following commutators: 

[M~b, Mcd]- = fab.cdghMgh (3. la) 

[M~b, Pc]- = f~b fPd (3. lb) 

[Pa, Pb]- = 0 (3.1C) 

where 

f a  gh [g~ hl b,cd = l[2( 'qad~blg~c hl + "qbt'~a Od --  "qac~blg~d hI --  "l]bd~a[g~c hI) (3.1d) 

f,,b,f = l l2('qb~ f - "qa~ f ) (3. le) 

The gauge field e% ~b (spin-affine connection) is determined by the vierbein 
components e l ,  
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oj~ ~o = -e~b(O~e~ ~ - p~vXex a) 

According to (2.28), (2.29), and (3.1), we find 

[Q, c%~b]_ = O~c ~b + cfhc% af - c~foj/b 

[Q, e~q_ = -ca.:e~ ": 

[Q, c ~b] + = _ :fc fa 

[Q, ~b]+ = B~b 

[a,  Bab]_ = 0 

and 

where 

[-0, ,-%°q- = o,.z "ab + e : o ~ J  - -~ai,~/b 

[-Q, e ~'q _ = - -~ g e ~ f 

[~. ~ob]+ = _ ~ i ~ I o  

[~, c"q+ = B '~b 

[~, B '°']_ = 0 

B 'ab  = - -Bah  - -  paacab + ~ d C  d'~ 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.5) 

In (3.3) and (3.4), we have used the antisymmetry of Latin indices, for 
instance, 

c ab = - d " ,  c~b = "qbac ~ = -- 'qbaC a" = - - C d  

The relations (3,3) and (3.4) give the BRST and anti-BRST transformations 
of the spin-affine connection oJ, "b, the vierbein e~ a, the auxiliary field Bab, 

and the local Lorentz ghosts and antighosts c '~b and ~b. They represent the 
symmetry of the local Lorentz part of quantum gravity in the vierbein formal- 
ism (Nakanishi, 1979; Ojima, 1980). 

4. THE CASE OF SIMPLE SUPERGRAVITY 

Simple supergravity without auxiliary fields is described in the fiber 
bundle formalism when one uses a principal superfiber bundle whose struc- 
tural group is the super-Poincar6 group S P  (Yates, 1980). By denoting the 
generators Mab, P,~, and Q,~, we have that the Lie superalgebra of S P  is given 
by (3.1) supplemented with 



1566 Tahiri 

where 

[Mao,  Q~,] -  = f~o . , j3Q~ (4. I a) 

= a e  [Q,~, Qis]+ f~,.13 ,, (4.1b) 

[Q~, P~]_ = 0 (4.1c) 

fab,e~ ~ -~" l]2(tYab)a f3 (4. ld) 

f ~ , . a  = (C~/,,),,i s (4. le) 

C is the charge conjugation matrix, 3, the Dirac matrices, and Cr~b = 
1/4[~/,,, "%]_. 

The only fields arising in the superfiber bundle approach to simple 
supergravity are the vierbein e~ ~, the spin-3/2 field tb~ '~, and the connection 
t% "b, which is given by (Yates, 1980) 

t %  ~b = l / 2 { e ~ b ( O v e ~  a - -  O~e~ ~) --  e~a(O~e~ b - -  3~e~  b) 

+ eSeX~evb(O~,e, .x  - 3xec, , )  + e"h~lJ~,C"yat~. - e,,~t~,,C.yb@,. 

+ ecveXae~b~,C 'yCt~x  --  e~'bT~,~ a + e~aT~,~ b - e¢o.eh'~eVbTvx "} (4.2) 

where 

Tla, v a = O~e,, ~ - O~e~ ~ + oa~abeb~ - £Dvabebp" 4- IJllxC"~alJjv (4.3) 

We remark that to~ b is an obvious generalization of the spin-affine connection. 
Let c "b, -?,b and c", ?'~ be the local Lorentz ghosts and the local supersymmetry 
ghosts associated with the Lorentz generators M,,b and the supersymmetry 
generators Q,,, respectively. The complex tensor c "b is anticommuting with 
itself, but the complex four-component spin-l/2 ghost c" is commuting with 
itself. Using (2.28), (2.29), (3.1), and (4.1), we find that the BRST and anti- 
BRST transformations for simple supergravity (Van Nieuwenhuizen (1981)) 
of the connection to,. ~b, the vierbein %", the gravitino ~¢~', the local Lorentz 
ghosts c '~b, -~,,b, and the local supersymmetry ghosts c '~, ?~' are given by (3.3) 
and (3.4) supplemented with 

[Q, ~'~]+ = O~c '~ - 1 /2c"b~v~(cr , , b )~  '~ 

[Q ,  c'~]_ = _ l/2cf3c~b(Crab)f~ ~' 

[ a ,  c '~l_ = B ~, 

[Q, B~]+ = 0 

and 

(4.4a) 

(4.4b) 

(4.4c) 

(4.4d) 

[Q, ~ ] +  = 0~? '~ - l / 2 - U ' b ~ ( ¢ r , ~ b ) f 3  ~' (4.5a) 
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where 

[-0, -d~] - = - 1/2?~(~b( Cr ,o )~" (4.5b) 

[Q, c"]_ = B ''~ (4.5c) 

[Q, B"q+ = 0 (4.5d) 

B,,~ = _B,~ _ 1/2(?13?ab + -~"bcf~)(Cr.h)f~" (4.6) 

5. DISCUSSION 

We have seen that it is possible to construct a geometrical model for 
quantized gauge theories, based on a Lie supergroup as gauge group, by 
using a superfiber bundle with base simply space-time and structure group 
the product of the gauge group with the two-dimensional odd translation 
group. In this geometrical framework, the soul-flatness condition is naturally 
obtained by the fact that the supercurvature is a tensorial superform. Then 
the BRST and anti-BRST transformations are determined by using the pseudo- 
tensoriality of the superconnection in the adjoint operational representation. 
So we have a geometrical formulation for gauge theories with Faddeev-Popov 
fields which is directly related to the superfiber bundle formalism without 
imposing constraints as in the superspace formulation. 

We have also seen that the BRST and anti-BRST transformations for 
gravity and simple supergravity can be cast into the same form by choosing 
the gauge group as the Poincar6 or super-Poincar6 group, respectively. Appli- 
cation to simple supergravity leads only to local Lorentz ghosts and local 
supersymmetry ghosts. It would be interesting to describe in the same way 
the general coordinate ghosts. This can be performed via local O s p ( 4 1 2 )  
supersymmetry as in the case of gravity (Delbourgo e t  al . ,  1982). 

Moreover, we should remark that the gauge-fixing plus ghost Lagrangian 
L ed of the spin-affine connection part of quantum gravity in the vierbein 
formalism (Nakanishi, 1979; Ojima, 1980) can be represented as a super- 
Lagrangian L~ as follows: Loumi and Tahiti (1993) established that the 
gauge-fixing plus ghost super-Lagrangian of Yang-Mills theory is given by 

L~ = (0~%b~)(00~) + (0~$)(O0qb~) + 1/2Ot{(005) 2 -t- (0~do) 2} (5.1) 

We can here easily show that this super-Lagrangian represents also that 
of the local Lorentz part of quantum gravity. Indeed, since the gauge-fixing 
plus ghost Lagrangian L ed is given by the lowest component of Lff, and o~ "b, 
c °b, -6 ub, B ~b, and B '~b are,  respectively, the (ab)-components of the lowest 
components of dO~, dO, dO, 00dO, and 0~dO, we get 
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Lgf = B ab~'OJl~ ab -~ OWCab( O txC ab q- qqcdO~lffa c bd -- "~cdCOl Cb cad ) 

+ 1/2a(BabB ab + B'b B'ab) (5.2) 

This represents precisely the gauge-fixing plus ghost Lagrangian of the spin- 
affine connection part of quantum gravity in the vierbein formalism (Nakani- 
shi, 1979; Ojima, 1980). 

Finally, we should also remark that simple supergravity without auxiliary 
fields is a theory with an open algebra. We recall that the only fields arising 
in the superfiber bundle approach to simple supergravity are the vierbein e~ a, 
the gravitino t~  '~, and the connection <%~b. On the other hand, the gauge 
theories whose gauge algebra is open (or/and which are reducible) can be 
quantized by the Batalin-Vilkovisky formalism, which provides'gauge-fixed 
actions with on-shell nilpotent BRST transformations (Batalin and Vilkovisky, 
1981, 1983). In this framework, the quantization of supergravity has been 
realized by Baulieu et al. (1990), while Antunovi6 et al. (1993) proposed a 
generalization of the Batalin-Vilkovisky formalism so that the BRST struc- 
ture of simple supergravity becomes nilpotent off-shell via the introduction 
of auxiliary fields. It would be interesting to find out how to make the BRST 
and anti-BRST algebra of simple supergravity obtained in the present work 
nilpotent off-shell. This may be realized by enlarging the space of fields in 
the theory by auxiliary fields, which can be naturally introduced through the 
supercurvature. We have used similar arguments for topological antisymmet- 
ric tensor gauge theories, so-called BF theories (Blau and Thompson, 1991), 
in four dimensions (Tahiti, 1994). Here, the supercurvature associated to the 
superconnection representing the antisymmetric tensor gauge field and its 
hierarchy of ghosts permits the natural introduction of auxiliary fields, which 
lead to the construction of an off-shell nilpotent BRST and anti-BRST algebra. 
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